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Part 1:
Why a fast ETL matters?
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File Edit View History Bookmarks Tools Help

Cleaning Big Data: Most Time-Corn X

C @

.- .- The 80/20 data
FOrbes  sionares innovation Leadership Money Consumer Industry Lifestyls SC i ence dile mma 1 /3

£ Gil Press Contributor @
I'write about technology, entrepreneurs and innovation.

TWEET THIS

data scientists found that they spend most of their time massaging rather than

Forbes: “Data Preparation (ETL

76% of data scientists view data preparation as the least enjoyable part of

tasks) account for about 80% of

A new survey of data scientists found that they spend most of their time . . )
massaging rather than mining or modeling data. ¥ Still, most are happy with th e WO r k O f da ta S CI e n tl S ts

having the sexiest job of the 215! century. The survey of about 80 data scientists

was conducted for the second year in a row by CrowdFlower, provider of a “data

enrichment” platform for data scientists. Here are the highlights:

Data preparation accounts for about 80% of the work of data scientists Source: https://www.forbes.com/sites/giIpress/2016/03/23/data—

preparation-most-time-consuming-least-enjoyable-data-science-
What data scientists spend the most time doing taSk'SU rVGY'SaYS/#364OCbb36f63

Py IMi: Faster predictions, better decisions. ' t ' I I ' l
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B The 80/20 data science dilemn X [iad 4

cC @ -/ wwrw.infoworld.com/artic 245/the-80-20-data- B = O % IN D | Q search i
= Infoworld : s T he 80/ 20 data
science dilemma 3/3

Opinions expressed by ICN authors are their own.

>

The 80/20 data science dilemma

Most data scientists spend only 20 percent of their time on actual data analysis and
80 percent of their time finding, cleaning, and reorganizing huge amounts of data,

which is an inefficient data strategy InfoWorld: “...Data scientists spend

000000 ... 80% of their time ...reorganizing

huge amounts of data (i.e. doing

Ad closed by Google
(e ETL tasks)”.
Ad closed by Google Source: https://www.infoworld.com/article/3228245/the-

80-20-data-science-dilemma.html

O O
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@ For Big-Data Scientists, Janito: X [iae

C @ @ & https;//www.nytimes.c Bl & &% IN B | Q search

~ The 80/20 data
&he New York Times = SCience dilemma 2/3

SUBSCRIBENOW | LOGIN

For Big-Data Scientists, Janitor . Cw .
Work’ Is Key Hurdle to Insights New York Yimes: “Data scientists ...

spend from 50% to 80% of their time in
... data wrangling (ETL tasks)”

...Data scientists, according to interviews and expert
estimates, spend from 50 percent to 80 percent of their
time mired in this more mundane labor of collecting and
preparing unruly digital data, before it can be explored for
useful nuggets.

“Data wrangling is a huge — and surprisingly so — part of
the job,” said Monica Rogati, vice president for data
science at Jawbone...

Monica Rogati, Jawbone’s vice president for data science, with Brian Wilt, a senior
data scientist. Peter DaSilva for The New York Times

Source: https://www.nytimes.com/2014/08/18/technology/for-
big-data-scientists-hurdle-to-insights-is-janitor-work.html

O O
By Steve Lohr . L. o
9 TIMi: Faster predictions, better decisions. ' t ' I I ' l
Aug. 17, 2014 f v = 2 []
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First Conclusion

Data Scientists need
a.fast(erpETL




Objective:

'F‘vonotello vs

data in motio
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Coded in &]ava Coded in GA

The users see: The users see:
gscaa | (&TLTEIT®

pyspoﬁg R @, python

data in motion

Spark is used inside: Anatella is used inside:

I X data Vitimi
dgig%bre}?%cs ‘ Iku IBM Analytics | n

integrated data mining
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Part 2
The TPC-H benchmark
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TPC’H benChmark Creation date: February 1998 http://www.tpc.org/tpch/

A world-famous benchmark to measure database efficiency on common “BI” Queries

ORACLE

)

TERADATA

8/6/2001 SQ|_ Ser\/er 10/9/2001
10/4/1999

I nfo !-omvgiﬁ M U S&@

7/15/1999 2009/6/8

N SYBASE
an T company
3/31/2003

=
oo
)

12/5/2002

(The Dates are the dates of first participation)

O O
‘ © 2019 TIMi: Faster predictions, better decisions. ' t ' I I ' l
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http://www.tpc.org/tpch/

TPC-H benchmark

Objective: run 22 SQL queries as fast as possible on a “reference” database:

2 categories of results:
* Clustered category (Database is distributed on many PC)
* Non-Clustered category (Database is running on 1 PC)

Rankings:

* by Speed

* by “Efficiency” (i.e. speed divided by price; price
includes hardware)

We run the 22 queries on 4 different database sizes (SF):

1TB

1GB 10GB 100GB

Unit: millions of rows

#HCustomers

H#Purchases

Figure 2: The TPC-H Schema

PART (P_)
SF*200,000

11

PARTKEY

ORDERS (0_)
SF*1,500,000

NAME

ORDERKEY

MFGR

CUSTKEY

BRAND

ORDERSTATUS

TYPE

TOTALPRICE

SIZE

CONTAINER

RETAILFRICE

COMMENT

SUPPLIER (S_)
SF*10,000

SUPPKEY

NAME

ADDRESS

NATIONKEY

PHONE

ACCTBAL

COMMENT

ORDERDATE

ORDER-
PRIORITY

CLERK

SHIP-
PRIORITY

COMMENT

PARTSUPP (PS_) LINEITEM (L_)
SF*800,000 SF*6,000,000
PARTKEY ORDERKEY
SUPPKEY PARTKEY
AVAILQTY SUPPKEY
SUPPLYCOST LINENUMBER
COMMENT QUANTITY
EXTENDEDPRICH
CUSTOMER (C_)
SF*150,000 I
CUSTKEY
TAX
NAME
RETURNFLAG
ADDRESS
LINESTATUS
NATIONKEY
SHIPDATE
PHONE
COMMITDATE
ACCTBAL
RECEIPTDATE
MKTSEGMENT
SHIPINSTRUCT
COMMENT
SHIPMODE
NATION (N_) COMMENT
25
NATIONKEY REGION (R_)
5
NAME REGIONKEY
REGIONKEY
NAME
COMMENT
COMMENT

This is thus 6 billions rows in one table




Technical considerations ... e

0 article 0€00
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> Seconnecter \[111]

AI I tests a re ru n n i ng O n : NOS St TIONS  ORDINATEURS PIECES ~ PERIPHERIQUES  IMAGE&SON  MOBILITE  RESEAUX

AUX CONSOMMABLES LOGICIELS  PAPETERIE >TIQUE

https://www.ldIc-pro.be/fiche/PB00251106.htm| 0_pecneon B L
All data is stored on a SSD (Samsung 970 NVMe 2TB) —

o [ )
' t imi ST
Gel Files

integrated data mining

S APACHE a NOS EXPERTS A VOTRE SE

poark %y Parquet

from January 2019. : :: 454€ on LDLC

_ o _ _ | SAMSUNG
All gueries run inside a non-interactive session -NAND SSD Solkl St e

O O
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integrated data mining

LDLC PC10 WANOWAN
Intel Core i7-8086K (4.0 GHz) 16 Go SSD M.2 NVMe PCle 480 Go + HDD 3 To NVIDIA GeForce RTX 2080 8 Go Windows 10 Famille 64 bits (monté) (ref: PC10 WANOWAN)

2avis Donnez votre avis

2 066€07 HT

2499€95TTC

ETRE INFORME

ASSEMBLE EN
FRANCE

RUPTURE 6

<


https://www.ldlc-pro.be/fiche/PB00251106.html

package main.scalal

import org.apache.spark.sql.DataFramel 13
' P‘ -H ben Chm ark import org.apache.spark.SparkContexti

import org.apache.spark.sql.functions.count!

/** s u ”

X TPC-H Query 44 TPC-H Query 4 expressed in “Scala

* Savvas Savvides <savvas@purdue.edu>l

“Official” TPC-H Query 4 expressed in “SQL”: I

class QB4 extends TpchQuery {!.

select override def execute(sc: SparkContext, schemaProvider: TpchSchemaProvider): DataFrame = {/
o orderpriority, val sqlContext = new org.apache.spark.sql.SQLContext(sc)!
c;unt(*} as order count import sglContext.implicits. |
from - import schemaProvider._ |
d
orders
where val forders = order.filter($"o_orderdate” »= "1993-07-01" && $"o_orderdate" < "1993-10-01").
o orderdate >= date '[DATE]" val flineitems = lineitem.filter($"1_commitdate"” < $"1_receiptdate")!
— . .select($"1_orderkey")!
and o orderdate < date '[DATE]' + interval '3' month S?E?($ —orderkey”)
—. .distinct!l
and exists ( N
SelECt* flineitems.join(forders, $"1_orderkey" === forders("o_orderkey")):
.groupBy($"o_orderpriority™)
from .ageg(count($"o_orderpriority"))
lineitem .sort($"o_orderpriority™).
where M
1 orderkey = o orderkey I
and 1 commitdate < 1 receiptdate
) o ”
group by ORDERS TPC-H Query 4 expressed as an “Anatella” Graph
o_orderpriority
order by
o orderpriority;
Thanks to Savvas Savvides (savvas@purdue.edu) for LINELTEM
providing the optimized Spark/Scala code! DataTable (S rows - 2 columns) (complete)
O_ORDERPRIORITY ORDER_COUNT
1 1-URGENT 10594

2 2-HIGH 10476 @ @
< ‘ All results are validated against the “reference” 3 3MEDIUM 10410 ' t ' m l
answers provided by the TPC-H. For example, for Q4: |* #NOoTsPECFED. 10556

5 5-LOW 10487 integrated data mining
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TPC-H benchmark result table 1

Table 1 1 GB database 10 GB database 100 GB database 1 TB database
—_ A B C D E F G H | J K L M N 0 P Q R S T U
_| Spark | Anatella [ Anatella Anatella _Spark_ ‘Anatella
Too |Arela) ERL | Anaota Aneela| S350 |Anatla) Avaota| 1830 | 38R0 | SEBU | 3BBU | SBB0 | GEPL | e | e Speedup 2S5 recei| Spare (el "R
Query [sec] runtime up [sec] runtime up [sec] runtime | runtime | runtime | runtime | runtime| runtime time “st,”| 1CPU | 6 CPU infinite . ”tere Tlme__l [sec] usage
[sec] [sec] [sec] [sec] [sec] [sec] [sec] [sec] [sec] (=) (=0/) (EF'U s (D—F'!J) _’ICPU [MByte]
(=P/1) [%]  |(=I/P) [%]

Q1 0.72 17 23 3.70 22 6 27.1 184 93 80 74 63 59 37.4 6.8 2.2 14 | 204 % | 148 % 260 204
Q2 0.16 27 176 0.70 218 310 5.7 956 792 751 700 688 686 649.0 167.2 120.0 1135 | 67.9% 06% | 615 800
Q3 0.70 19 27 3.72 126 34 34.5 929 732 727 651 643 932 571.9 26.9 27.0 166 | 616 % 3.7 % 360 | 10053
Q4 0.72 20 28 3.70 37 10 33.7 830 436 410 349 350 738 2295 246 21.9 68 | 27.7% 4.1 % 337 160
Q5 0.70 160 228 4.70 234 50 43.7 | 2275 | 1208 | 1123 994 994 1516 673.6 52.0 34.7 154 | 296 % 1.9 % 509 2045
Q6 0.22 14 64 1.20 17 14 6.2 102 55 46 39 37 35 20.7 16.4 56 33 ]1203% 6.1% | 653 154
Q7 0.70 231 329 3.70 214 58 456 | 1113 955 879 852 831 810 761.7 24.4 17.8 16.7 | 68.4 % 4.1 % 760 8828
Q8 0.70 190 270 4.22 208 49 49.3 | 1621 1312 | 1266 1147 | 1131 1124 | 1009.3 32.8 22.8 205 | 623 % 3.0 % 511 1576
Q9 2.70 283 105 17.73 111 6 | 2000 | 2059 | 2064 | 1524 1389 | 1348 1366 | 1227.4 10.3 6.8 6.1 | 59.6 % 9.7 % | 2668 7392
Q10 1.22 194 159 4.20 76 18 38.9 | 1035 849 805 756 766 758 698.6 26.6 19.5 17.9 | 675 % 38% 394 2169
Q11 0.14 91 645 0.72 44 61 4.2 441 365 359 338 320 329 303.9 104.2 77.7 71.8 | 68.9% 1.0 % 32.8 2192
Q12 0.70 20 28 3.22 20 6 47.7 454 349 334 306 301 299 262.8 9.5 6.3 55| 57.9% | 105% 284 1161
Q13 2.20 138 62 13.22 27 2 105.6 377 256 204 203 185 182 142.8 3.6 1.7 14 | 379% | 28.0% | 1109 1186
Q14 0.16 15 95 0.39 16 40 3.2 373 317 322 284 295 286 275.4 115.8 88.8 855 | 73.8% 0.9% 37.3 257
Q15 0.14 18 126 1.20 21 18 o error error 593 error 568 563 error error 112 2528
Q16 0.39 173 442 3.20 84 26 31.4 839 698 671 647 643 837 587.3 26.7 20.3 18.7 | 70.0 % 3.7 % 280 | 11636
Q17 0.39 20 52 2.70 27 10 26.7 | 1255 972 889 862 779 763 664.8 46.9 28.5 249 | 53.0% 2.1 % 646 525
Q18 0.72 21 29 4.20 33 8 36.9 | 1135 943 857 814 802 785 717.4 30.7 21.3 194 | 63.2 % 3.3 % 408 8672
Q19 0.70 15 21 4.70 17 4 44.1 972 331 312 295 290 287 119.2 22.0 6.5 27 1 123 % 4.5 % 492 188
Q20 0.39 41 105 1.70 44 26 21.7 972 803 744 732 737 698 643.2 447 32.1 296 | 66.2% 22% 314 885
Q21 1.70 578 339 12.72 204 16 127.7 | 3815 | 2976 | 2912 2629 | 2611 2469 | 22354 29.9 19.3 17.5 | 58.6 % 3.3% 330 329
Q22 0.72 17 23 4.20 24 6 44.5 206 153 153 140 130 128 112.3 4.6 2.9 25| 545% | 216 % 595 2027

‘ © 2019 TIMi: Faster predictions, better decisions. ' t ' I I '
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Part 3:
Amdahl’s Law and
incompressible times
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184 sec

Amdahl’s Law:
Example:
TPC-H Q1

(100 GB database) 99 sec
X axis: number of CPU’s 80 sec
Y axis: Runtime [%]
63 sec
37 sec

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

16
Amdahl Q1 s =20.4%

Time

1 2 3 5 10 100 1000 > nCPU

O O
© 2019 TIMi: Faster predictions, better decisions. ' t ' I I ' l
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Amdahl’s Law for distributed computations 1/2 §

S o compressible time (1—s) 1-s
Amdahl’s Law: Total running time= incompressible time (S) + =S+—
number of CPU (n) n
Figure 1: Amdahl’s law
< 1 > < 2 o 3 > < 4 s >,
< 2 >
Runtime on 1 CPU =t; = 100% = 20% 80%
e ~ ~
™~ S tj N (1_5) ti -~
< t2 >~
N . - = -
Runtimeon 2 CPU =t; = 60% = 20% 80%/2=40% MinimumRuntime [%] = s (=20%)
< ~ ~, .
Ssti 2> (Is)ti /2 > MaximumSpeedUp = }/ ( %00/ )
< t3 S (when n — «) 0
Runtime on 3 CPU =t3=46.6% = 20% | 80%/3= 26.6%
e ~ ~,
S st T Y1-s)t1/3 7
< ta > “s”=20% : the percentage of
Runtimeon4 CPU =t;= 40% = 20% | 80%/4=20% the process that is not paral- ° °
< o~ ~ - - -
<< /\(1_5) t /4 lelizable/distribuable [%]. ' t ' I I ' l

integrated data mining
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Amdahl’s Law for distributed computations 1/2

Figure 2: Amdahl’s law (s= 50%)

Runtimeon 1 CPU =t; = 100% =

Runtimeon2 CPU=t,= 75% =

Runtime on 3 CPU =t3=66.6% =

Runtimeon 4 CPU =t;=62.5% =

<4

<

< 1 > < 2 >
- ts ~
SN -
50% 50%
< ~ < o~
S st 7 (1-s) t; ~
< = 2 h h
This is important: When
0, 0 = % . .
s 50% ><50A’/2 25/> “s”>=50, it means a “failure”
st; . (1-s) t;7/2 of the (distributed)
< > > computation engine
50% 50%/3= 16.6%
< >< >
~ S tl - (1'5) t] /3
ts .
< 2> , . wn | MaXimum
50% SOWA- 125% Incompressible Time “s SpdedUp
< N, < o~
S st > (1-s)'t, /4
From the previous slide —T s =20% 5

LA LB A A A B LR LI LU




Speedup

Amdahl’s Law for distributed computations 2/2

With “s”=5%, we have a
speed-up of “20” when
using 4000 CPUs!

1-s
Amdahl’s Law: Total runningtime= S +——
n
Zﬂ "_—"———‘——————_——_——_——“———‘————::;F%
l"/’--
Y
18 s
// Incompre55|ble:T|me “s”
16 / 50%
/ g 25%
14 / —- 10%
/ — L 5%
12
8
6
i |
2
0 _ .
L N RN ETEEEE R R
™ -~} g

Number of processors

32768

65536

With “s”=50%, we have a
speed-up of “2” when
using 4000 CPUs!
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Part 5:
Deep dive into the
benchmark results
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Deep dive: Q13: How to estimate

https://en.wikipedia.org/wiki/Inverse problem

“s” is the “incompressible” time in [%]

Number of CPU'’s n

Q13 Measured Spark time [sec]

Q13 Measured Spark time [%]
Amdahl s=50%

377 256

204 203| 185 182

100%| 68%

54%| 54%| 49% 48%

100%| 75%

67%| 63%| 60% 58%

Amdahl s=40% 100%| 70%

Amdahl s=30%

60%]| 55%| 52% 50%

100%| 65%

53%| 48%| 44% 42%

Amdahl s=37.9% 100%| 69%

... Where we used “Amdahl’s Law”:

59%| 53%| 50% 48%

RunTime on n CPU[%]= s+ (1-s)/n

Amdahl s=50%

100%

90%

80%

70%

60%

50%

40%

“fitting” Errors

]

The final “s” value is the
value that minimizes the
sum of all the (absolute value of
the) “fitting” Errors

- » Number of CPU’s

o X axis: number of CPU’s
Y axis: Runtime [%]

100% 100%

Amdahl s=50% Amdahl s=40%

90%

90%
80% 80%

70% 70%

62%¢60% T TTIN T , — 60%
50% : S 50%
1
40% ' 40%
1 2 3 4 5 6 1 2 3 4 5 6
100% 100%
=309 - 0
0% Amdahl s=30% 005, Amdahl s=37.9%
80% 80%
70% 70%
60% 60%
50% 50%
40% 40%
1 2 3 4 5 6 1 2 3 4 5 6

Blue: real measures of the runtime on Q13
Green: runtime computed using the Amdahls’s law
for different values of “s”

Red: one fraction of the global “fitting” error

Details : https://github.com/Kranf99/TPC-H-Benchmarck-Anatella-Spark
Precisely: inside the file “compute_incompressible_time_s_v2.anatella”
STEP: http://download.timi.eu/docs/Global optimization algorithm STEP.pdf



https://github.com/Kranf99/TPC-H-Benchmarck-Anatella-Spark
http://download.timi.eu/docs/Global_optimization_algorithm_STEP.pdf
https://en.wikipedia.org/wiki/Inverse_problem

Time

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

22

Amdahl’s Law: Examples X axis: number of CPU’s

Amdahl Q1

>
10 100 nCP[(P

s =20.4%

<4

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

Y axis: Runtime [%]

Amdahl Q13 Amdahl Q17 Amdahl Q14
100% 100%
90% 90%
80% 80%
—_—— —
70% 70%
60% 60%
50% 50%
40% 40%
30% 30%
H H auon
Incompressible time “s
20% 20%
10% 10%
10 100 1000 1 10 100 1000 1 10 100 1000

s = 37.9% (s=53% s = 73.8%

On the query Q17, Spark fails because s>50%

O O
© 2019 TIMi: Faster predictions, better decisions. ' t ' I l . l

integrated data mining



«’

b~ 4

Part 4.
Timing results and
incompressible times
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The Spark incompressible runtime “s”: The Harsh Truth

Spark Spark Anatella Anatella
TPC-H | . _ ) Speedup vs
incompressible [ Jncompressible| runtime L
Query _ _ Spark infinite
time s [%] time “s” [sec] [sec]
CPU

Ql 20.4% 37.4 27.1
Q2 67.9% 649 5.7
Q3 61.6% 571.9 34.5
Q4 27.7% 229.5 33.7
Q5 29.6% 673.6 43.7
Q6 20.3% 20.7 6.2
Q7 68.4% 761.7 45.6
Qs 62.3% 1009.3 49.3
Q9 59.6% 1227.4 200
Q10 67.5% 698.6 38.9
Qll 68.9% 303.9 4.2
Q12 57.9% 262.8 47.7
Ql3 37.9% 142.8 105.6
Ql4 73.8% 275.4 3.2
Q15 error error 9.7
Qle 70.0% 587.3 31.4
Q17 53.0% 664.8 26.7
Qls 63.2% 717.4 36.9
Q19 12.3% 119.2 44.1
Q20 66.2% 643.2 21.7
Q21 58.6% 2235.4 127.7
54.5% 112.3 44.5

\

ALWAYS >1

O O
2019 TIMi: Faster predictions, better decisions. ' t ' I I ' l
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=, How is it possible that the Spark
\  incompressible time is above 50%?

PTEEL, PR Ep—  GE—
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Part 6:
Other benchmarks
results
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Table 2

27

e s | - Could it be luck?
Big- . .
B{ h pressible| pressible
Qenc ) time s" | time"s”
Y e | )
Qi | 57% | 3% “Amdahl’s Law in Big Data Analytics: Alive and
@2 | 21% 20 % S : .
@ | s% | 0% Kicking in TPCx-BB (BigBench)".
Q4 | 22% 22 % IEEE International Symposium on High Performance, 2018
Q6 30 % 20 %
Q8 42 % 29 %
Q10 89 % 75 %
Q11 44 % 35 %
Q12 38 % 26 %
Q13 32 % 24 %
Q14 61 % 37 %
Q15 77 % 57 %
Q16 23 % 16 %
Q17 87 % 74 % =
Results are consistent
Q19 95 % 84 % . . .
i [ so% | o with published litterature
Q2 | 7% | 41%
Q24 | 42% | 31% 1 1 ° °
Q. | 2% ’M imum Speed-up: — =—-—=6.6
0 [ 7% | T R SpeetP S "~ 0.15 " l "

Smin integrated data mining



Spark “tuning” for maximum performance 1/2 *

(=] Optimizing Spark jobs for max x + B - )
& C & michalsenkyr.github.io/2018/01/spark-performance & W o
Michal Senkyr's blog
Many thanks to
Savvas Savvides (savvas@purdue.edu) Ootimizing Soark iobs f . " Content
; ; timizin dlk JODS 1o maximum perrormance
from the Purdue University for P gop J P l . ranstommetions
providing the Optimized Spa rk/scala ) 2018-01-04 = spark W scala spark performance o DataFrames and Datasets
| o Parallel transformations
code! | N | 5 Partiio
Development of Spark jobs seems easy enough on the surface and for the most part it really is. The provided * <. Farttoning
APls are pretty well designed and feature-rich and if you are familiar with Scala collections or Java streams, you o DataFrames and Datasets
“ . ” . will be done with your implementation in no time. The hard part actually comes when running them on cluster o Repartitioning
BIOg d bOUt tuni ng Spa rk' and under full load as not all jobs are created equal in terms of performance. Unfortunately, to implement your « 3. Serialization
https //m iCha ISe N kvr glth u b IO/ZO 18/0 jobs in an optimal way, you have to know quite a bit about Spark and its internals. o Data serialization

In this article | will talk about the most common performance problems that you can run into when developing e DataFrames and Datasets
1/spark-performance © oSt com
Spark applications and how to avoid or mitigate them.

o Closure serialization



https://michalsenkyr.github.io/2018/01/spark-performance

Spark “tuning” for maximum performance 2/2 2

© Optimizing Spark jobs for maxin X +

&

Cc @ michalsenkyr.github.io/2018/01/spark-performance B &

DataFrames and Datasets

The high-level APIs are much more efficient when it comes to data serialization as they are aware of the actual
data types they are working with. Thanks to this, they can generate optimized serialization code tailored
specifically to these types and to the way Spark will be using them in the context of the whole computation. For
some transformations it may also generate only partial serialization code (e.g. counts or array lookups). This
code generation step is a component of Project Tungsten which is a big part of what makes the high-level APIs
so performant.

It is worth noting that Spark benefits from knowing the properties of applied transformations during this process
as it can propagate information on which columns are being used throughout the job graph (predicate
pushdown). When using opaque functions in transformations (e g. Datasets’ map or filter ) this information
is lost.

val input = sc.parallelize(l to map | _

Test toD5 . persist{org.apache.spark. storage . 5t
input . count

val shuffled = input.repartition

tungsten 1102 .9ms 912ms 1776ms

Running Times in function of meta-parameter
(Smaller is Better)

Best Value
Default Value

Worst Value

_—

1776

o

200 400 600 800

=
o
o
o

1200 1400 1600 1|800 2000

Speed-up: 1.2 Slow-down: 1.61

In the best scenario, optimizing everything, you
can expect to have a speed-up of maximum 1.5
compared to the default values.

O O
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https://adamdrake.com/command-line-tools-can-be-235x-faster-than-your-hadoop-cluster.html

Q Command-line Tools can be 235 X +

&« c @ adamdrake.com/command-line-tools-can-be-235x-faster-than-your-hadoop-clusterhtm B o

Adam Drake ===

LATEST| ABOUT | CASE STUDIES | CONTACT | PRESS

Struggling to hire developers? Check out ApplyByAPI!

Command-line Tools can be 235x Faster than your
Hadoop Cluster

January 18, 2014

Share this: twitter // facebook // linkedin // google+

Introduction

As | was browsing the web and catching up on some sites | visit periodically, | found a cool article from Tom Hayden about using
Amazon Elastic Map Reduce (EMR) and mrjob in order to compute some statistics on win/loss ratios for chess games he
downloaded from the millionbase archive, and generally have fun with EMR. Since the data volume was only about 1.75GB

containing around 2 million chess games, | was skeptical of using Hadoop for the task, but | can understand his goal of learning
and having fun with mrjob and EMR. Since the problem is basically just to look at the result lines of each file and aggregate the
different results, it seems ideally suited to stream processing with shell commands. | tried this out, and for the same amount of

data | was able to use my laptop to get the results in about 12 seconds (processing speed of about 270MB/sec), while the

Hadoop processing took about 26 minutes (processing speed of about 1.14MB/sec).




Chess benchmark 2/3 B

https://adamdrake.com/command-line-tools-can-be-235x-faster-than-your-hadoop-cluster.html

Objective: Count the different game results in a chess text-file database of 3.46GB

[Event "URS-ch31"]
[Site "Leningrad RUS"]
[Date "1963.11.7?"]

[Round "16"] Game Outcome count
[White "Kholmov, Ratmir D."] " "

Result "1/2-1/2 1782291
[Black "Zakharov, Alexander V."] [Resu . / ” /2]
[Result "1.0°] [Result "1-0"] 1888992
[ECO "B36"] [Result "0-1"] 1383030

[PlyCount "65"]

(moves from the game follow...)

FS‘,%TT:E | " SN INE

Read all Text Data Files Keep only the rows Compute Format the results for Save the results
with the results of the counts a more beautiful display in a text file
the game

~
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Adam Drake writes: “...for the same amount of data (3.46GB in 140 files) | was able to use
my laptop to get the results in about 12 seconds (processing speed of about 270MB/sec),
while the Hadoop processing took about 26 minutes (processing speed of about

1.14MB/sec).”

Running on

Run-Time

Processing

GEEE

Speed

Speed

Hadoop 7 nodes (c1.medium) on AWS 26 minutes | 1.145 MB/sec 1
Shell 1 portable PC (unknown brand) 12.8 seconds 270 MB/sec 235
Anatella 1 Portable PC (MSI-WS65) 11.25 seconds | 307.5 MB/sec 268
Processing Speed [MB/sec] SpeEd'uP: 1'%
Anatella 307.5
Command-Line i 270
Hadoop | 1145
(g 50 100 150 200 250 300 350
‘ Speed-up: 268

Benchmark Sources on https://github.com/Kranf99/Chess-Benchmark
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Amdahl’s Law for distributed computations 2/2

Amdahl's Law

20 T — —

/“'#_‘#
18 7
32 more CPU equals // Incompressible Time “s”
16 a gain of 3 ggfy/’
14 in “speed-up” /  |+3 e 10%
/ —— 5%
12
o /
E 10 ”"'_'—""'_'_'"'_"—ﬁ'_"_"—?'/—'_"—'_"'“_"“""'—._'_;:.T-;'-'T—_“'"'"""'—‘—‘-""_'_
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7 Vi -
8 /7T 7
. // // 32 more CPU|gives practically
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128
256

o
)

1024
2048
4096
8192
16384
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Choose a new CPU for your next laptop?!

https://www.youtube.com/watch?v=DEw-3vpghbQ

:;0

P M o) 000/1157 @ & = O

Intel Killed their OWN Product Lineup — Core i9 vs Xeon

34
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Choose a new CPU for your next laptop?!

¥ Streaming

v 3D modéling

v Rendéri n'Eh
v .CAD" *
\/Deep learning

¥ Video'editing

v Graphic deS|gn

Comp%-g
o)

O O
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Choose a new CPU for your next laptop?!

Corei9
Q900K

J

Cores / Threads 8c/8t 8¢/ 16t

Base Clock 36GHz 36GHz

Boost Clock 49GHz 5.0GHz
Manufacturing Process 14nm 14nm

SR 5409 it

Lower Core Count + Higher Frequency:
CPU’s names ending with a “K”

For “difficult to parallelize” tasks:

e Office (Word, Excel, etc.)

* Video games
e 95% of Machine Learning algorithms.

Core i7
8700K

6c/ 12t
3.7 GHz

4.7 GHz

Cores/ Threads
Base Clock
Boost Clock

Cache

Price per 1k

Higher Core Count + Lower Frequency:
CPU’s names ending with a “X”

For “easy to parallelize” tasks:
3D rendering
« 2D video compression/production

. —Trrehinaloarn:

Corei7-9800X Corei99820X Corei9-9900X Corei9-9920X Corei9-9940X Corei9-9960X Core |9 9980XE

§

8c/ 16t

38GHz

4.4 GHz
4.5GHz TBM

16.5MB

$599

"isi' "9

intel)
= =

14c/ 28t

JSERIES

10c/20t 10c/20t 12¢ /24t 18c/ 36t

30 GHz

44 GHz
4.5GHz TBM

2475MB

3.5GHz

44 GHz
45GHzTBM

1925MB

33GHz

44 GHz :
45GHzTBM  45GHzTBM

1925MB 22MB

3.5GHz

44 GHz
4.5GHz TBM

1925MB

3.3GHz

41 GHz
42GHzTBM

16.5MB

$1199 $1399 $1699 $1999

$899 $999
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3D Rendering benchmark: SPECviewperf 13 (https://www.spec.org/gwpg/gpc.static/vpl3info.html)

Showcase (showcase-02) Siemens NX (snx-03) Medical (medical-02) (Heart)


https://www.spec.org/gwpg/gpc.static/vp13info.html

Choose a new CPU for your next la
SPECviewperf 13.0 - Part 1

3DSMax  m CATIA = Creo

Core i7- o s Core i7-
87OQK K ‘ 8700K

C;;Z(I)?(-E-“ aTe 05 8/ I Corei9-7900X
Corei0-7900X | -1 | Ryzen7 2700X
Corei7-7820X 0471 Il Core i9-9900K
Corei7-6800K | - (07] | Core i7-7820X
Coreig9900K | 2 | Core i9-
e 9980XE

Ryzen72700X —'ﬁm | Core 7-6800K

0 20 40 60 80

Score-Higher is better

100 120 140

Computing Shapes & Rendering 3D images:
https://www.spec.org/gwpg/gpc.static/vpl3info.html

6 cores /12 Threads 3.7 GHz
8 cores /16 threads 3.6 GHz
3 GHz

Core i9-
9900K

Core 17-8700K
CPU

Core i7-8700K
Core 19-9900K

Core i9-9980XE

Ryzen'72700X

Corei9-7900X

Core i9-

18 cores / 18 threads
Corei7-6800K

Core i9-7900X

10 cores / 20 threads

3.3 GHz

Core(/7-7820X

9980XE M

SPECviewperf 13.0 - Part 2

Enerqy | M Maya | & Medical

SPECviewperf 13.0 - Part 3

Showcase m Siemens NX Solidworks

k:mmma
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Adobe Premiere - Sample Project Export

Core i9-
9900K

Core i9- i+
9980XE

Core i7-
8700K

Core 9-7900X
Core/-7820X
Ryzen7 2700X

Corei/-6800K

1:30 200 2:30 ] : i

Time to render (M:SS) - _ower is better Core i7-8700K 6 cores 3.7 GHz
. . ] Core i9-9900K 8 cores 3.6 GHz
Almost the same execution time despite that
one is running on 6 cores and the other is Core i19-9980XE 18 cores 3 GHz
running on 18 cores! Corei9-7900X 10 cores 3.3 GHz

‘ Nvidia 2080 Ti 4352 cuda cores 1.5 GHz




«” “

b~ 4

Part 7:

To distribute or not to distribute?
To parallelize or not to parallelize?

O
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The Spark incompressible runtime “s

(P4

Spark Spark Anatella Anatella
TPC-H | . _ ) Speedup vs
incompressible [ Jncompressible| runtime L
Query _ _ Spark infinite
time s [%] time “s” [sec] [sec]
CPU

Ql 20.4% 37.4 27.1
Q2 67.9% 649 5.7
Q3 61.6% 571.9 34.5
Q4 27.7% 229.5 33.7
Q5 29.6% 673.6 43.7
Q6 20.3% 20.7 6.2
Q7 68.4% 761.7 45.6
Qs 62.3% 1009.3 49.3
Q9 59.6% 1227.4 200
Q10 67.5% 698.6 38.9
Qll 68.9% 303.9 4.2
Q12 57.9% 262.8 47.7
Ql3 37.9% 142.8 105.6
Ql4 73.8% 275.4 3.2
Q15 error error 9.7
Qle 70.0% 587.3 31.4
Q17 53.0% 664.8 26.7
Qls 63.2% 717.4 36.9
Q19 12.3% 119.2 44.1
Q20 66.2% 643.2 21.7
Q21 58.6% 2235.4 127.7
54.5% 112.3 44.5

For most of the queries (see the cells in red in the
second column), the Spark incompressible time “s” is
above 50%! Meaning that the maximum speed-up for
Spark is 2, whatever the size of your cluster.

“s” [in seconds] is the time that you get when your run a
query using an infinite number of CPU’s

Ratio Always >1: This means that whatever the amount
of CPU used to run a query, one Anatella server will
always be faster than any number of Spark servers.

This makes the whole Spark system nearly unusable
since the major Spark promise (i.e. horizontal scalability:
to deliver higher-speed on a larger infrastructure) is not
achieved: it’s a catastrophic failure for Spark.

O O
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Distributed computations: 2 Alternatives ”
(1) One Query per Cluster (2) One Query per Node

. For In-Memory Tools that needs the whole o
Tl IME RAM of the cluster to operate Tl me

Incompressible time “s”=from 20% to 50%

=> No scalability o N5 N N~ 5 N 5 N = N = )
e e e e ) Qlla4, ||Q5 24 |(Q81a4, |(Qllat, |Q14 44, Q1754 |1Q20.44
Q1 =4 e 34 D6 D 3 3 Q@ ([a6  (j@9 [[QiZ  |lQ15 |lQ18 |Q21
— | — Q3 Q7 Q10 Q13 Q16 Q19 Q22
PNl V2l P2l P2l Val val ¥al Q4
kQZ Eﬁé Eﬁé Eﬁé Eﬁé Eﬁé Eﬁé Eﬁé \. VAN AN VAN VAN AN AN J

J

~\

For Out-of-Memory Tools that can process any data size with low
memory requirements

Incompressible time “s”=

=> (near) Infinite scalability

4 ~ ~ - -
3 ab. b Tl Tl B | T
Q =N TR TN TR TN TN =TS

J

[sz Bil) B D) B B ) B Zﬁi]

O O
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1 TB database 43
TPC-H |Anatella runtime| Anatella RAM [ o o
wey | |esenea|  DiStributed computations:
Qi 260 (" 204) y ”
[ J
@ One query per node”:
Q3 360 10053 .
as =l  Low RAM requirements
Q5 509 2045
Q6 65.3 154
Q/ 760 8828 b—Pp Average of the “RAM” consumption is: 2953 MB
Q8 511 1576
Q9 2668 7392 ) i ]
Q0 o 5169 With Anatella, we manipulate a 1TB database using less
Qi1 378 5192 than 3GB RAM on average!
Q12 284 1161
Q13 1109 1186 As a comparison, on a 1GB database, Spark uses between 2 GB and 4GB RAM.
Q14 37.3 257
LHL 112 2528 Inside Anatella, we can rewrite Q3,Q7,Q9,Q16,Q18 to use around 2GB
Qleé 280 11636 (at the price of 30% more seconds at runtime)
Q17 646 525
Q18 408 8672
Q19 497 188
314 885
330 329 o o
595 \_2027/ © 2019 TIMi: Faster predictions, better decisions. ' ' I I ' l
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TIMi vs Spark “in the cloud”

If we assume “one query per node” distributed computation model
(i.e. we use the most efficient distributed computation model):

TPC-H |Anatella 1 CPU| spark 1CPU Anatella
Query runtime [sec] | runtime [sec] Speedup vs
Spark 1 CPU

Q1 27.1 184 (" 6.8)
Q2 5.7 956 167.2
Q3 34.5 929 26.9
Q4 33.7 830 24.6
Q5 43.7 2275 52
Q6 6.2 102 16.4
Q7 45.6 1113 24.4
Q38 49.3 1621 32.9
Q9 200 2059 10.3
Qlo 38.9 1035 26.6
Qll 4.2 441 104.2
Ql2 47.7 454 9.5
Qi3 105.6 377 3.6
Ql4 3.2 373 115.9
Q15 9.7 error

Qle 314 839 26.7
Q17 26.7 1255 46.9
Qls 36.9 1135 30.7
Q19 44.1 972 22
Q20 21.7 972 447
Q21 127.7 3815 29.9
Q22 44.5 206 \___4.6/
SUM { 988.1 21943 (21943

988.1

» Average of the “Speed-up” compared to Spark is 39.4

1.000 € with Anatella

\Qz_' 22.200 € with “Unreliable” Spark on 1 machine

Anatella is 22.2 times
more efficient than x5

s 111.000 € with Spark on 10 machines
park

Infrastructure Cost is multiplied by 10 because of 10 machines
Running-time is divided by two
=> Price is multiplied by 10/2=5

(555.000 € with Spark on 50 machines)

= 22.2:Anatella is, at least, 22.2 times more efficient than Spark



Summary :

* Spark incompressible-time “s” is between 20% to 50%.
Catastrophic failure: The maximum “speed-up” for Spark is between 2 and 5 (when adding more CPU’s).

* One Anatella server is always (several orders of magnitude) faster than a Spark cluster of infinite size.
* With Anatella, there are no limits in computing power: i.e. “Speed-ups” above 1000 are possible.

* With Anatella, there are no limits in volumetry (manipulate a 1TB database using less than 3GB RAM!).
Anatella is also much more reliable.

* When you switch from Spark to Anatella: Divide you Amazon bills by 100!

* With Anatella, you have the choice to totally avoid the cloud and all the disagreements that comes with it!
(You get: higher computation speed, lower costs, a more secure infrastructure)

» Data scientist’s efficiency multiplied by a factor between 4 to 11 (because of Anatella’s speed & integration with TIMi).
* Better results: enough computing power to find the “golden egg”
* No headache: better and easier maintenance

* Anatella has a Free community edition!

O O
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WHAT ABOUT THE OTHER 20 %7?

“No free lunch”: There will always be a specific,.ad-hoc algorithm

that solves a problem better than.any generic and automated tool.

Competition Metric Winner

Heritage Health Price Some kind of R? 46.12%
AUSDM?2009 (following Netflix) AUC 69.41%
Kaggle Axa Telematics 2015 AUC 96.35%
PAKDD2007 AUC 70.01%
PAKDD2010* AUC 64.10%

KDD2009-upselling AUC 90.92%
Datascience.net Axa cross-selling 2015  Lift at 10% 26.09%
KDD2009-churn AUC 76.51%

TIMi
(or similar
automated tool

46.24%
69.24%
95.97%
69.28%
63.30%
89.94%
24.74%
74.74%

KDD2009-appetency AUC 88.19%

We solved it in 2007.

86.31%

Diferencia




y < Vtimi

integrated data mining

Thanks for your Attention

For more information, please consult our website:
https://timi.eu

Download your free copy of Anatella today!

® ®
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Vitimi

integrated data mining

Backup up Slides

The following slides are not part of the
presentation. They are used occasionnaly to
answer to some specific technical questions.

O O
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Stop dreaming... Start acting now with TIMi |
Solutions (SAS, IBM, Statistica, ...) | Classical Hadoop (Spark,etc.) TIMi

Main Bottlenecks (complexity) There are not enough:

* specialized statisticians,
* computing power

Self - Service (only for simple things such as dashboards)
(Citizen Data Scientist)

1 or 3 BIG servers Exadata....)
®

Advanced Al functionnalities On a sample
(e.9. network mining, text mining)

Deployment / Scoring Strategic Only
Small Datasets (less than 200 rows) ©

Man Hour SSSSSSSSSS
(a lot, PhD in Math)

?

There are not enough:
* specialized data scientists

®

Giant clusters (200-300 servers)

3-4 weeks

Not in ecosystem (Third party tool)
1/ month
500

no graph mining

2-3 weeks (High Maintenance Cost)

SSSSSSSSS55555555SS (too much,
many MS in Data Science & IT)

?

© (required because full of bugs)

There are not enough:
* Marketers ©
(self-service on laptops)

© Everything is in self-service,
without code: ETL, modeling, dashboards

Everything can run on 1 or 2 Laptops
1-3 hours (+ high accuracy)

© (1 day + high accuracy)
Integrated & Fast

Daily (or more)

2000

More accurate results, No Size
Limits & Self-Service

One click

S (with people like us)
(license per PC per year)

©
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Frank Vanden Berghen

V Chairman & CEO timi Global Frank founded Timi (Business Insight) in 2007, after
completing a PhD in applied mathematics focused
on optimization methods and predictive modeling.

o _ o . As he faced constant challenges in processing big

V Specialized in data mining since 1999 data on client project, he started adding more
functionalities and developing the integrated data
mining suite that is known today.

: : : Frank steers the company and transmits his values
V PhD in applied Mathematics of uncompromised ethics in all we do: high quality

code, excellent client focus, and over-achieving in

service.
V Extensive consulting experience in many industries Frank leads the R&D department, is chairman of
. . & p. y the board of timi global, CEO, leads academic
including TelCo, FSI, Retail, etc. relations and certification programs.
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Daniel Soto Zeevaert

Daniel leads our operations in the American markets.

He has an extensive_experience in analytics and has
been a promoter of Timi for the past 5 years.

Daniel combines a strong academic background, a

Specialized in Advanced Analytics since 1999 extensive consulting experience and an entrepreneurial
V P Y profile that make h§n uRiqu_ely suited to lead % team of

experts in predictive analytics.
He has worked in many industries and has been a

V7 Executive Director American Markets

i ini itati speaker in many professional conferences such as SAS
v Expert in data mining, quantitative market foprum,_Baqmar,yPEofessional Pricing Society, Deloitte
research Analytics, and ACEMI.

He also gave conferences and courses in universities in
. . : : the US, Belgium, France, Peru and Colombia.
V Previous work include Deloitte Consulting,

Essec Business School, the Pennsylvania State
University,
InSites Consulting, and Direktio.
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